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ABSTRACT
This technical report presents an edge-optimised approach to

baleen whale call detection for the BioDCASE 2025 challenge -
Task 2. Taking inspiration from Task 3, it focuses on deploy-
ment constraints of resource-limited hardware. Where common
models range in parameter starting from 4 million training pa-
rameters [1] with architectures often unsuitable for real-time edge
deployment, our model contains just 35,571 training parameters
(159KB) and operates efficiently on a 64-bit ARM Cortex-A53 with
512MB RAM. On a detection window basis of 11.8 second frames,
the model performs well on two of the three classes; applying a
precision-focused approach we detect blue whale ABZ calls at 72%
precision and fin whale burst pulse calls at 80% precision, while
downsweep predictions lack behind at 18% precision. Applying
our temporal head designed for compression into TFLite, we main-
tain reasonable precision for ABZ calls at 65%, while downsweep
calls rise to 29% precision and burst pulse calls drop significantly
to 4%. Acknowledging the difficulties in call-specific identification,
this report highlights the feasibility and potential of edge-optimised
architectures for baleen whale detection in real-world monitoring
scenarios where computational resources and power consumption
are severely constrained, while addressing common challenges and
next steps to improve the results.

Index Terms— baleen call detection, signal processing, tem-
poral attention, edge-computing

1. INTRODUCTION

Our marine environment face significant threats [2, 3], requiring
scalable bioacoustics monitoring solutions to assess biodiversity
and support conservation. Passive Acoustic Monitoring (PAM) of-
fers a promising non-invasive approach for underwater monitoring
but transitioning deep learning (DL) based PAM from research pro-
totypes to operational systems remains challenging, often requiring
performance trade-offs through quantization or pruning [4]. Fur-
thermore, current DL approaches often report high accuracies based
on biased evaluation protocols that do not consistently account for
temporal correlations in acoustic data [5, 6]. By following the
guidelines of the BioDCASE 2025 Challenge for the ”Supervised
Detection of Strongly-Labelled Whale Calls” we aim to reduce this
validation bias in real-world deployments and encourage further de-
velopment.

Thanks to blueOasis Portugal for supporting this research.

Although recent deep learning approaches have shown promis-
ing results for whale call detection [7], the deployment of these
models on resource-constrained edge devices remains challenging.
This technical report presents a development pathway for address-
ing these challenges: an edge-optimised temporal attention network
designed specifically for deployment on tiny hardware platforms,
achieving a balance between detection performance and computa-
tional efficiency and laying out clear next steps for development.

2. METHODOLOGY

2.1. Dataset and Preprocessing

The BioDCASE benchmark builds on the baleen whale call dataset
containing 1,880 hours of recordings with expert annotations for
Antarctic blue whale ABZ calls, fin whale burst pulses, and fin/blue
whale downsweep calls [8]. Following the challenge protocol, we
maintained strict temporal separation between training and valida-
tion sets to prevent data leakage. Applying a sliding windowing
approach of 11.8s windows (theorising the necessity of longer win-
dows for transient whale sounds and burst calls) with 50% over-
lap, and undersampling of the heavily over-represented background
down to 60% in the training set, we obtained 473,620 training win-
dows and 351,374 validation windows. The overall class distribu-
tion is presented in Table 1. We designed the model as a multi-class
labelling problem with a confidence score for the presence of each
class per window.

Class Train Val
Background 362,944 312,730
Blue Whale ABZ 64,846 28,931
Fin Whale Pulse 26,677 6,301
Fin/Blue Downsweep 31,615 5,581
Total 473,620 351,374

Table 1: Class Distribution

Our preprocessing pipeline extracts three-channel acoustic fea-
tures optimised for low-frequency whale vocalisations (5-125Hz
range): log-power spectrograms with 250Hz sampling rate, first-
order derivatives, and computationally efficient wavelet coefficients
processing only approximation and first-level detail coefficients.
Channel-wise normalisation parameters were computed from the
training set to ensure consistent scaling across diverse recording
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Figure 1: Weighted F1-Macro learning curve on the classification
head across the detection of background noise, blue whale ABZ, fin
whale pulse calls, and fin/blue whale downsweep calls

Figure 2: CNN Feature stack for blue and fin whale calls on a 48-
second audio snippet. Example shows a blue whale ABZ call [8].
In production these are 11.8-second windows.

conditions. Table 2 details the complete processing pipeline to
transform the raw acoustic recordings into standardised sensors
suitable for deep learning inference on edge hardware.

2.2. Model Architecture

The proposed temporal attention network employs a lightweight
CNN backbone with six convolutional layers, utilising separable
convolutions to reduce computational complexity. Key architectural
features include:

• A multi-class label classification head for per-window predic-
tions

• Asymmetric max-pooling to reduce the frequency dimension
while preserving full temporal resolution for precise event lo-
calisation

• Multi-scale temporal processing via parallel dilated convolu-
tions to capture patterns across different time scales

• A lightweight temporal attention mechanism to weigh and ag-
gregate features across 60 time steps

• Batch normalisation throughout for training stability
• Focal loss optimisation addressing severe class imbalance
• Cyclical learning rate scheduling for improved convergence

A detailed architecture diagram is presented in Figure 3. The
model contains only 35,571 training parameters and is just 159KB
in size, representing a 95-99% size reduction compared to stan-
dard and edge-optimised CNNs [1], enabling deployment on remote
memory-constrained devices.

2.3. Thresholding

Performance evaluation followed a precision-focused approach,
recognising that in ocean sustainability and conservation false pos-
itives often incur higher costs than false negatives. We therefore
implemented class-specific detection thresholds optimised for pre-
cision on the classification head. An example of this approach
is presented in Fig. 4. Considering the multi-class problem, the
background class is only activated when no other classes reach the
threshold.

3. WEIGHTED MONITORING METRIC

For the early stopping mechanism, we employed a weighted F1
macro metric for a weighted precision-recall rating favouring preci-
sion at 70% over 30%.

The weighted F1 score for each class i is computed as shown in
(1),

F
(i)
1,w =

(wp + wr) · P (i) ·R(i)

wp ·R(i) + wr · P (i) + ϵ
, (1)

where P (i) and R(i) are the precision and recall for class i, respec-
tively, wp is the precision weight, wr = 1−wp is the recall weight,
and ϵ = 10−8 is a small constant to prevent division by zero. The
precision and recall are calculated using the standard definitions in
(2),

P (i) =
TP (i)

TP (i) + FP (i) + ϵ
, R(i) =

TP (i)

TP (i) + FN (i) + ϵ
,

(2)
where TP (i), FP (i), and FN (i) represent the true positives, false
positives, and false negatives for class i, respectively. The final
monitoring metric is the macro-averaged weighted F1 score across
all classes as given in (3),

F1,weighted−macro =
1

C

C∑
i=1

F
(i)
1,w, (3)

where C is the total number of classes. In our experiments, we used
a precision weight of wp = 0.7 to emphasise precision over recall
in the early stopping criterion.

3.1. Post Processing of the Temporal Head

The temporal head processes attention weights to extract precise
call boundaries within 11.8-second windows. Class-specific pro-
cessing parameters were derived from statistical analysis of the
training set (Table 3).

The temporal processing pipeline applies class-specific atten-
tion weight smoothing using median filters (kernel sizes: bmabz=5,
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Processing Stage Parameter Implementation Details Output

Signal
Preprocessing

Resampling Target sampling rate: 250Hz using librosa resample 250Hz audio
Bandpass Filter 4th-order Butterworth filter, 5-125Hz cutoff frequencies Filtered signal

Spectrogram
Generation

Window Function 2.0s Hann window (500 samples at 250Hz) STFT frames
Hop Length 0.2s hop (50 samples, 90% overlap) Time resolution
FFT Size 1024-point FFT providing 0.244Hz frequency resolution 513 freq bins
Power Conversion Log-power: SdB = 10 log10(|STFT |2)−max(SdB) dB spectrogram

Spectral
Enhancement

Background Subtraction Time-averaged profile with 15-sample Gaussian smoothing Enhanced signal
Contrast Enhancement 5-120Hz whale frequency band Band-enhanced

Normalisation Percentile Scaling Map 5th-95th percentile to [-20, +20] dB range Standardised

Multi-Channel
Features

Channel 1 Log-power spectrogram (F × T )
Channel 2 First-order frequency derivatives with safety checks (F × T )
Channel 3 Daubechies-4 wavelet (3 levels, approx + detail coeffs) (F × T )

Temporal
Windowing

Window Size 60 frames (11.8s at 0.2s hop) Feature windows
Overlap 30 frames (50% overlap between windows) Sliding windows

Final
Standardisation

Channel-wise Norm Training-set calculated mean/std applied to all data splits (F × T × 3)

Table 2: Feature Extraction Pipeline for Blue and Fin Whale Detection. F = frequency bins (513), T = time frames per window (60), Output
tensor dimensions: (513×60×3) per analysis window. Processing optimised for 5-125Hz whale vocalisations on edge hardware with under
40k training parameters CNN models.

Class Count Mean Std Median Min Max P5 P10 P25 P75 P90 P95 IQR CV
bmabz 9463 7.95 2.76 7.36 1.29 36.62 4.69 5.23 6.14 9.09 11.60 13.62 2.95 0.35
bp 5308 1.39 0.31 1.38 0.46 2.82 0.92 1.01 1.20 1.60 1.82 1.93 0.40 0.22
d 2856 2.44 1.11 2.41 0.37 7.36 0.83 0.98 1.56 3.19 3.93 4.40 1.63 0.46

Table 3: Training set duration statistics (seconds) for merged annotation classes used to derive class-specific temporal processing parameters.

bp=1, d=1), followed by adaptive thresholding based on atten-
tion statistics. High-attention regions exceeding µ + ασ (where
α ∈ [0.05, 0.08, 0.1] for ‘bp‘, ‘d‘, ‘mbabz‘) are identified as poten-
tial call boundaries. Duration constraints derived from 5th and 95th
percentiles filter detected events: bmabz (4.69-13.62s), bp (0.92-
1.93s), and d (0.83-4.40s).

Post-processing applies class-specific merging of nearby events
(max gaps: bmabz=8.0s, bp=1.0s, d=1.5s), overlap-based dedupli-
cation (thresholds: 0.2-0.3), and confidence filtering to produce fi-
nal temporal boundaries. Events are ranked by a composite score
combining classification confidence (40%), peak attention (40%),
and duration bonus (20%) when resolving overlapping detections.

3.2. Computational Performance

Training was done on 4 NVIDIA A100 GPUs with distributed data-
parallel processing and XLA, completing in 10 hours for the 473K
training windows. Processing occurred with sharded TFRecord files
across 16 parallel workers. Implementation includes deterministic
data shuffling, fixed random seeds, and a batch size of 128.

To evaluate the feasibility of real-time, on-device deployment,
the model’s computational performance was benchmarked on a
resource-constrained edge device: a Raspberry Pi Zero 2 W, which
features a 64-bit ARM Cortex-A53 CPU and 512 MB of RAM. The
performance was measured across five 60-second audio files with
varied whale call patterns, with multiple trials ensuring stable re-
sults. The system demonstrates exceptional efficiency, achieving
a mean real-time factor (RTF) of 24.5×, indicating it can process
audio over 24 times faster than it is recorded. The complete end-
to-end processing of a 60-second audio clip takes, on average, just
2.45 seconds. The compressed TFLite model has a minimal disk
footprint of only 0.15 MB. The inference latency for a single 11.8-
second analysis window is 187.42 ± 1.07 ms. The temporal post-
processing adds negligible overhead. The peak memory footprint
of the application during runtime was 213.1 MB, well within the

device’s operational limits. These results confirm the model’s suit-
ability for long-term, low-power, and real-time acoustic monitoring
applications. Key performance metrics are summarised in Table 4.

Component Metric Value

Model Size (MB) 0.15
Input shape [1, 513, 60, 3]

Inference
Latency per window (ms) 187.42 ± 1.07

95th percentile (ms) 189.21
Real-time factor (RTF) 24.5×

Temporal Processing Latency per window (ms) 0.79 ± 0.17
Overhead vs inference 0.4%

Resource Usage Peak memory (MB) 213.1
Peak CPU (%) 155.6

Table 4: Detailed performance breakdown of the whale call detec-
tion system on Raspberry Pi Zero 2 W.

3.3. Results and Discussion

Bearing in mind the computational constraints and potential of the
edge-optimised architecture, we present both the per-window anal-
ysis and the evaluation following the BioDCASE benchmark.

Starting with per-window analysis, Fig. 5, we achieve a preci-
sion of 72% for the blue whale ABZ call and 80% for the fin whale
burst calls, but poor precision of 18% on downsweep - reflective of
previous reports on the challenges of labelling and predicting this
class [7]. Recall rates vary between 31%, 41% and 54% for down-
sweep, ABZ, and burst pulse calls respectively.

The results of ‘evaluation.py‘ provided by the BioDCASE
benchmark are presented in Table 5. There is a noticeable drop
in performance, which was somewhat expected given the minimal
temporal head restriced to edge limitations. Nevertheless, 65% pre-
cision for ‘bmbabz‘ is promising for a model with just 35K training
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Dataset Method TP FP FN Recall Precision

casey2017
bmabz 676 446 1742 0.280 0.602
d 77 339 476 0.139 0.185
bp 0 13 292 0.000 0.000

kerguelen2014
bmabz 473 154 3824 0.110 0.754
d 70 138 709 0.090 0.337
bp 4 56 3742 0.001 0.067

kerguelen2015
bmabz 329 215 2419 0.120 0.605
d 126 181 1398 0.083 0.410
bp 1 39 1269 0.001 0.025

Final Results
bmabz 1478 815 7985 0.156 0.645
d 273 658 2583 0.096 0.293
bp 5 108 5303 0.001 0.044

Table 5: Detection performance results as per the BioDCASE eval-
uation across datasets for different classes (bmabz, d, bp).

parameters. The temporal processing pipeline may benefit from fur-
ther tuning to enhance both precision and recall for this class.

The significant drop in precision for the burst pulse calls was
unanticipated given its high performance in the classification head.
It seems that the 11.8-second window approach is fundamentally
mismatched to the 1.39-second average calls. Despite custom
class tuning, the temporal attention mechanism lacks the resolution
needed for short events within the 11.8-second windows. Down-
sweep calls being longer interestingly achieved higher precision
than both temporal burst pulse calls and the ‘d‘ classification head
at 29%, but recall is low.

Given the considerable characteristic differences between the
targeted events both in the time and frequency domain and the ex-
tremely efficient processing pipeline, future endeavours might seek
to build custom per-class inference models with feature extraction
tailored specifically for each individual class. Three models could
run in real-time after one another, and still run smoothly on tiny mi-
crocontrollers such as the one used in this experiment (Raspberry
Pi Zero 2 W, 512MB RAM). Such class-specific pipelines could
significantly enhance temporal detection accuracy.

We aimed to develop a lightweight solution to detect whale
presence in real-time. Considering passive acoustic monitoring of
baleen whales for real-time applications such as adapting shipping
routes based on mammal presence, we argue that the windowing
approach in the classification head would be sufficient and perhaps
preferable over individual call detection when deployed on edge
devices. The impact of inconsistent labelling is reduced since the
classification simply determines whether a class is present or absent
within a given window, which is sufficient to support policy deci-
sions. Additionally, once the data is retrieved, high-performance
computing (HPC) analysis can be performed on land to refine the
predictions. Statistical inference of call presence could be adjusted
for known precision and recall errors, though hydrophone hardware
and environmental differences must be taken into account. In pro-
duction, the classification head could serve as an initial detection
stage, with the temporal head attempting to locate exact call bound-
aries when needed.

It has to be noted that all validation datasets are recorded with
the ”AAD-MAR” hydrophone. As there can be considerable dif-
ferences in acoustic data recorded with different hardware, perfor-
mance on hydrophones outside of this domain remains to be ad-
dressed. For example, only 12% of the training data was recorded
with ”AAD-MAR”, whereas 77% of the training data was recorded
with ”AURAL”. Given that the vast majority of training data comes
from a single hydrophone type, the model may perform better on
hardware within this domain (AURAL). Alternatively, we would
want to look at hydrophone calibration to enhance performance for

production.
For the evaluation set submission, we supplied a prediction set

of a model trained on the training data only (∼80 epochs with early
stop), as evaluated on the validation set. We also trained a version
that includes both the training and validation set for 120 epochs
(13.5hrs) for pure evaluation on the unseen evaluation set.

4. CONCLUSION

This work demonstrates the feasibility of edge-optimised deep
learning for baleen whale detection, achieving competitive perfor-
mance on the classification head with just 35K parameters suitable
for edge compute. While temporal localisation remains challeng-
ing, particularly for short burst pulse calls, the classification head
provides reliable presence detection suitable for real-time conserva-
tion applications. Future work should explore class-specific mod-
els and cross-hydrophone generalisation to improve deployment ro-
bustness.
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Figure 3: Architecture diagram. Includes: Adam optimizer
(lr=1e-4, clipnorm=1.0) and Focal Loss (γ = 2.0, class αA =
[0.2, 0.6, 0.6, 0.9]). Metrics: Accuracy, Precision, Recall, F1-
macro, F1-micro, Weighted-F1-macro (70% precision, 30% recall).

Figure 4: Threshold analysis approach demonstrated in the blue
whale ABZ call class on the evaluation set. ”Optimal” is maximised
F1, the arrow highlights our selected threshold of 0.6 for optimised
precision.

Figure 5: Performance metrics per class in the classification head.
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