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1.​ ABSTRACT 

This report will describe the attempt made by the Signal Analysis 
Research (SAR) group in Toronto Metropolitan University 
(TMU) to  translate the familiar challenge of bird sound 
classification to a resource-constrained microcontroller. In order 
to describe the algorithms in place, we will detail our analysis of 
the design problem, and its performance against benchmarks of 
inference time, model size, and memory usage.  
 
In order to describe the rationale for the feature extraction and 
classification models created, this team will describe the design 
process that led to our solutions. Our methodology focuses on 
Mel-frequency cepstral coefficients (MFCC), Gammatone 
frequency cepstral coefficients (GFCC), and spectral flux 
features. Different machine learning models were explored such 
as linear Support Vector Machines (SVMs) and shallow 
Convolutional Neural Network (CNN) architectures, quantifying 
their performance with their corresponding feature by testing 
accuracy and efficiency. The three systems achieved testing 
accuracies from 89.1% to 92.65%, with on-device storage ranging 
from 24 B to 18.36 KB of code, RAM usage between 780 B and 
34.5 KB, and end-to-end inference time of 196 us to under 42ms.  
These results demonstrate that efficient, low computational 
models can achieve strong performance, supporting practical 
deployment of automated acoustic monitoring in resource limited 
environments. 

 
Index Terms— Emberiza citrinella, TinyML, Feature Extraction, 
Time-Frequency Analyses, Spectral Flux. 

2.​ INTRODUCTION 

Automated acoustics monitoring enables large-scale and long 
term assessments as it uses technology to detect, analyze, and 
identify sound rather than relying on human observation. 
Although traditional artificial intelligence methodologies have 
been proven to be effective in predictive classification systems 
[1], there is a growing need that these systems are not only 
accurate but efficient enough to run on compact and lower power 
devices - the TinyML paradigm. The DCASE 2025 Task 3 
challenged the creation of a robust detection system which was 
required to correctly detect the Emberiza citrinella 
(Yellowhammer Bird) in the presence of background noise, 
overlapping sounds, and varying recording conditions [2]. The 
model needed to be lightweight with low computational and 
memory requirements, making it ideal for edge hardware.  

 
The technical approach to this challenge involved three main 
stages: audio preprocessing, feature extraction, and model training 
and evaluation. While deep learning models may require less 
preprocessing, they require significant computational resources 
from the device, leading to incompatibility with applications on 
many edge devices. 
This work instead explores a number of carefully chosen audio 
features to determine if strong performance can be achieved with 
minimal computational cost. This paper will describe the 
performance of: Mel Spectrograms, Gammatonne Frequency 
Cepstral Coefficients (GFCCs), and spectral flux  statistics. 
 
2.1 ​ Feature Selection  
 
2.1.1 Mel Spectrogram 
 
One prevalent time-frequency (TF) characteristic capable of 
event-detection is the mel spectrogram. The mel spectrogram 
combines windows of overlapping Short Time Fourier Transforms 
(STFTs) with logarithmically scaled frequency bins to produce a 
representation of the spectral distribution of energy in a signal 
over time. 
 
These images contain audio signatures that have been proven to 
be processible by traditional and lightweight AI implementations 
for the purpose of audio classification [3, 4, 5]. 
 
2.1.2 Gammatone Frequency Cepstral coefficient (GFCC) 
 
GFCCs are a compressed version of a spectrogram inspired by 
how the human auditory system processes sound. They are 
computed by taking the short-time fourier transform (STFT) of 
the input signal and applying a gammatone filterbank to obtain 
the gammatone spectrogram. Then, the discrete cosine transform 
(DCT) is computed to obtain a set of coefficients for each window 
of the signal. These coefficients describe distinct aspects of the 
spectral shape of the input signal. For example, the first 
coefficient represents the log-energy, or overall loudness of the 
signal window, lower-order coefficients capture the broad spectral 
envelope, while higher-order coefficients describe fine spectral 
details. By analyzing these coefficients in time, we can obtain a 
compressed, yet highly informative feature vector for machine 
learning (ML) classification.  
 
2.1.3 Spectral flux 
 
Spectral flux is a TF analysis, where the frequency content/power 
spectrum of the signal is examined between consecutive audio 
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spectral frames, measuring its rate of change [6]. The 
measurement quantifies how quickly the spectrum involves over 
time; higher values indicate rapid spectral changes which are 
typically seen in transient or non-stationary sounds [6]. It is 
particularly effective in distinguishing between background noise 
and biologically relevant signals, such as bird vocalizations, as 
well as onset detection, speech and music discrimination, and 
bioacoustic identification [7]. Spectral flux requires only a 
frame-wise spectral magnitude comparison making it 
computationally effective [7].   
 
 
Three different signal classification methods were created to 
compare accuracy and resource efficiency:  

●​ Method A - Mel Spectroscopy as an image, input into a 
shallow Convolutional Neural Network (CNN) 

●​ Method B - GFCC-based model using a simple linear 
Support Vector Machine (SVM). 

●​ Method C - Spectral Flux features to train a simple 
linear SVM. 

 
 
By evaluating these approaches, this work aims to assess the 
tradeoffs between accuracy and efficiency, and help provide 
insights on a practical deployment of an automated acoustics 
detection system where resources are limited.    
 

3.​ METHODOLOGY 

 
 3.1​ Preprocessing  
  
Audio was sampled at a rate of 14 kHz, as the team found most 
differential spectral information between the Yellowhammer bird 
(YH) and non-target bird samples visible below the ranges of 7 
kHz. 

 
Figure 1: Typical Audio Spectrogram behaviour of YH and 

Non-Target Bird Sounds 
 
It was also determined that a sufficient classification could be 
determined by a 1.5 second sample, leading to a total of 21,000 
samples. No digital filtering was performed on the signal 
 
3.2​ Feature Extraction  
 
3.2.1 Method A  
 
Noting the consistent ridges present in the YH audio samples, the 
team chose to create 40 frequency bands between 3 kHz and 
6.750 kHz, and a mel spectrogram, creating a (40 by 25 image) 

capable of being passed to the model input. This way, only 
contrasting regions of the TF spectrogram are passed to the next 
phase of the model. For this pipeline, the BioDCASE starter 
framework was incorporated [8]. 
 
3.2.2  Method B  
 
For each set of data, the first and second GFCCs were computed. 
Plotting the GFCCs with respect to time gave a clear distinction 
between yellowhammer cries relative to other birds, shown in the 
plots below.  
 

 
Figure 2: Yellowhammer Bird First GFCC vs Time Plot 

 

 
Figure 3: Negative Sample First GFCC vs Time Plot 

 
 
Through the plots above, it can be seen that the yellowhammer 
cry GFCCs follow a consistent, and different pattern than other 
birds. Several statistical features were considered using this 
information. The set of features that resulted in the best results 
were autocorrelation and periodogram related features for the first 
GFCC, and form factor and zero crossing rate features for the 
second GFCC. Autocorrelation measures how similar the GFCC1 
signal is to a delayed version of itself. A reference window is 
taken and slid across the GFCC vs time signal, for each frame, the 
dot product between the static and moving frames are taken.  
 

  𝐶𝑜𝑟𝑟[𝑖] =
𝑚=0

𝐿−1

∑ 𝑥[𝑚]·𝑥[𝑛]

 
A high correlation indicates that the signal contains periodic 
patterns, a feature which is consistent with the yellowhammer 
bird cries unlike other birds. The periodogram ratio feature 
quantifies how much energy is concentrated in the dominant 
frequency within the signal. To obtain this feature, the power 
spectral density (PSD) is computed at each frequency, providing 
the amount of power at that frequency. Then, the ratio between 
the maximum PSD and the total PSD is taken. A high ratio 
indicates that there is a dominant frequency within the signal, 
revealing periodicity. We expect that the yellowhammer cries 
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should have a higher power ratio than other bird cries. The 
zero-crossing rate computes how frequently the 0.5 threshold is 
crossed for a 0 to 1 normalized GFCC2 vs time signal. Finally, 
form factor (FF) measures the complexity of the GFCC2 signal 
by comparing the standard deviation and variance of the signal 
and its derivatives: 
 

 ​  (2) 𝐹𝐹 =  σ''σ

σ2'
 
3.2.3 Method C  
 
For each preprocessed audio file, the spectral flux was computed 
using a STFT. The audio was divided into overlapping frames 
with a length of 50ms and a 25ms hop (overlap), and the 
magnitude spectrum was computed for each. The Yellowhammer 
uses frequencies between 2 kHz to 8 kHz with its most prominent 
frequencies being in the range of 5 kHz-8 kHz. To focus on the 
prominent frequency range of the Yellowhammer, only the 
spectral bins between 5 kHz-8 kHz were kept and analyzed. 
Spectral flux was calculated as the squared difference in 
magnitude spectrum between each successive frames within the 
frequency band:  
 

​        (3) 𝐹𝑙𝑢𝑥(𝑡) =
𝑘
∑ (𝑋

𝑡
(𝑘) − 𝑋

𝑡−1
(𝑘))2

 
Where   is the magnitude of the k-th frequency bin at frame 𝑋

𝑡
(𝑘)

t, and the summation is over all frequency bins within the range of 
5 kHz-8 kHz. The mean and variance of the spectral flux values 
across all the frames in each signal were used as the final features.  
 
 
Table 1. Examples of Spectral Flux Mean and Variance for 
Yellowhammer, background noise, and other birds 

Audio  Mean Variance 
(Standard 
Deviation) 

Yellowhammer 334.1239 417.0241 

Yellowhammer 349.1590 412.5898 

Bird 289.3187 215.0526 

Bird 346.0958 287.4858 

Background 356.2084 150.8736 

Background  360.1533 55.3285 

 
 
3.3​ Machine Learning Implementation   
 
3.3.1 Method A  
 

For the purposes of this classification, we found a shallow CNN 
to be more than sufficient. Classification accuracies of up to 93% 
could be achieved with just one convolution layer, one max 
pooling layer, and a dropout rate of 40%. 
 
3.3.2 Methods B and C  
 
A linear SVM classifier was trained using the extracted spectral 
flux features.  The model was fit using two dimensional inputs, 
the extracted mean and variance of spectrum flux, for all training 
samples which had positive class labels for Yellowhammer and 
negative labels for the other audio files. The model was validated 
with a separate set of validation files.  

4.​ RESULTS 

Table 2: Resource Efficiency for all Models  

 Method A Method B Method C 

Training Model 

Model Size 
(Bytes) TF model 

3.6 kB 40 bytes 24 bytes  

Model 
Parameters 

922 10 6 

Input shape (40, 25) (4, 1) (2, 1) 

Tiny Model 

TFLite Micro 
Size (kB) 

18.364 kB N.E 1848 bytes 

Memory Usage 
on Target Device 
(kB) 

34.46 kB N.E N.E 

Inference Time 

Feature 
Extraction (𝜇s) 

34520 𝜇s N.E N.E 

Model Inference 
(𝜇s) 

7397 𝜇s N.E 196 𝜇s  

Classification Performance 

Testing Accuracy 
(%) 

92.65% 91.18% 89.10% 

False Positive 
(%) 

0.535% 4.14% 21.52% 

False Negative 
(%) 

19.9% 17.4% 8.08% 

N.E. = Not experimented 
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4.1​ Accuracy Rates 
 
 
4.1.1 Method A 
 
The spectral image performs well as a CNN model input, 
generating an average accuracy of 92.65%. With the False 
Positive rate at 0.53% and the False Negative rate at 20%, one 
could determine that the system does a significantly better job at 
filtering non-target bird sounds at the cost of  under-identifying 
positive samples. 
 
4.1.2  Method B  
 
Combining the four features computed from the first and second 
GFCC features provided an accuracy of 90.18%, with a false 
positive rate of 4.14% and a false negative rate of 17.40%. The 
higher false negative rate of this model is likely due to certain 
yellowhammer cries being recorded with high noise levels, which 
attenuated the periodicity of the signal, resulting in an altered 
frequency composition which was less differentiable through 
GFCCs. 
 
4.1.3 Method C  
 
The spectral flux linear SVM model achieved a testing accuracy 
of 94.01%, demonstrating its strong performance of detecting 
Yellowhammer acoustics under varied conditions with only two 
features, mean and variance spectral flux. The model has a false 
positive of 21.52% indicating that some background and other 
bird acoustics were incorrectly classified as Yellowhammer. 
However, the false negative percentage is only 8.08% meaning 
that the model is far less likely to misclassify Yellowhammer 
calls. Overall, the model has a high accuracy and relatively low 
false negative suggesting that the model is reliable for automated 
bird detection.  
 
4.2​ Efficiency  
 
4.2.1 Method A  
 
Resource efficiency, the combined effect of a highly condensed 
model and an efficient feature extraction process, is the main 
limiting factor pertaining to the deployment of ML models on 
edge devices. The current pipeline boasts an inference time of 
41917 𝜇s, with 34520 of that time centered on extracting the 
spectrogram image.With an entire inference in under a second, 
this solution presents itself as very time conservative. At the same 
time, it boasts a conservative arena allocation of 18 kB during 
inference and classification. 
 
4.2.2  Method B  
 
The GFCC feature model is highly compressible; considering the 
first two GFCCs, TF information of the bird cry signal is 
represented in two values per window. Using the statistical 
parameters discussed above as features, a 1x4 feature vector of 
these features is able to capture TF trends for each sample, 
providing a highly compressed model for classification. However, 
the creation of the GFCC statistics is a highly resource intensive 
process which should not be understated. 

 
4.2.3 Method C  
 
This model is lightweight and fast, allowing it to be suitable for 
resource-constrained devices. The TensorFlow model size is only 
24 bytes, and  
has a corresponding TFLite tiny model of just 1848 bytes. There 
is minimal memory usage on the targeted device of only 780 
bytes, and the inference is completed in just 196 𝜇s. The model 
has only 6 internal model parameters and 2 input features 
achieving detection accuracy with low computation. Due to the 
simplicity of the classifier, the majority of the computation effort 
is shifted to the feature extraction stage. Digital signal processing 
such as windowing, SFFT, and the spectral flux calculation takes 
up the RAM and timing requirements. The overall efficiency of 
Model C  not only reflects the model inference cost, but also the 
memory and computational overhead of audio processing in 
real-time.  

5.​ DISCUSSION 

For this submission, both mel and gammatone filterbanks were 
used as part of two different models. In comparing the results, it is 
seen that using gammatone filterbanks to compute GFCCs 
provided higher accuracy than analyzing mel spectrograms. Since 
animal sound data typically contains high amounts of noise, 
gammatone filterbanks are the ideal choice through the use of 
sharp cutoff bandpass filters. Since noise has a broad frequency 
band, one specific noise frequency will likely only appear in one 
filter if a small overlap is used. However, with the mel filterbank, 
which uses triangular filters, a particular noise frequency can be 
captured by multiple filters, causing noise amplification relative to 
the bird sounds. The two plots below are a mel and gammatone 
spectrogram for the same yellowhammer bird sample. It is seen 
that due to the difference in filter structure, the gammatone 
spectrogram contains higher contrast between the bird cry and 
background noise.  
 

 
Figure 4: Gammatone Spectrogram (Left) vs Mel Spectrogram 

(Right) Comparison for Yellowhammer Bird Cry 
 
It is no surprise, however, that the compression of the GFCC 
images to a handful of statistics, while having benefits on the 
model side, has significant drawbacks on the resource efficiency 
of the application.  
 
Spectral flux variance showed to be an effective differentiation 
factor in bird sound classification and background sounds. While 
the mean flux represents the overall rate of spectral change, the 
variance of the flux across the audio frames reflects the fluctuation 
and irregularities. Using the files, Yellowhammer typically 
exhibited a greater variance (Table 1) compared to non-target 
sounds, indicating a more dynamic, transient sound compared to 
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the background noises and more regular calls of the non-target 
birds. However, it should be noted that this SVM-inspired 
approach has limitations in application and generalizability. The 
simplicity of the model allows it to be interpretable and efficient, 
but its performance may decrease in more complex acoustic 
environments. This approach works best when the classifications 
are linearly separable based on the chosen features, spectral flux 
mean and variance,  but in scenarios where the acoustics are more 
nuanced and require more modeling on temporal dependency than 
more features and a model capable of capturing deeper/complex 
patterns would be necessary [9].  

6. ​ CONCLUSION  

The Mel Spectrogram provides a versatile audio fingerprint to 
identify audio samples, seen very obviously by its high accuracy 
in identifying the YH birds against not just background signals, 
but also other bird sounds. With localized frequency ranges 
tweaked through experimentation, we can create low-resolution 
that can still serve as a signature. 
 
We also found the spectral flux and GFCC characteristics capable 
of differentiating the positive and negative bird audio samples 
with the added benefit of reducing model size. Further 
investigation may go into comparing the performance of a system 
with minimal feature extraction and a deep neural network to one 
of our lightweight model-centered systems. 
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