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ABSTRACT

We present a modified spectrogram processing approach combined
with temporal sequence analysis for Antarctic whale call detection
in the BioDCASE 2025 Challenge Task 2. Building on the base-
line YOLO approach, We implement enhanced spectrogram pre-
processing through pre-filtering, magnitude inversion, and 98th per-
centile normalization. We created temporal awareness by generat-
ing 3-frame RGB sequences from consecutive spectrogram frames,
allowing a YOLOv11m detector to process temporal information.
Class-specific confidence thresholds are applied based on validation
performance analysis. On the validation set, the approach achieves
59.45% F1-score, 72.88% precision, and 51.93% recall, represent-
ing an improvement over the baseline YOLO performance of 43%
F1-score.

Index Terms— whale call detection, spectrogram preprocess-
ing, temporal sequences, YOLO, passive acoustic monitoring

1. INTRODUCTION

Antarctic whale call detection presents challenges due to the low
presence rate of calls (< 10% of recording time) and variable un-
derwater acoustic environments across different Antarctic sites and
time periods. The BioDCASE 2025 Challenge Task 2 focuses on
detecting seven types of Antarctic blue and fin whale calls, grouped
into three categories for evaluation, as illustrated in Fig.[T]

The baseline YOLO approach provided by the challenge or-
ganizers achieves 43% F1-score on the validation set. Standard
spectrogram-based approaches face difficulties with whale calls
due to their low-frequency characteristics and potential masking
by background noise. We addressed these issues by modifying the
spectrogram preprocessing pipeline and adding temporal sequence
processing to the baseline YOLO framework.

2. DATASET CHARACTERISTICS

2.1. AcousticTrends_BlueFinLibrary Dataset

The dataset consists of 1880 hours of Antarctic whale recordings
from the AcousticTrends_BlueFinLibrary (ATBFL) [2], spanning
11 site-year datasets collected between 2005-2017 across Antarc-
tica. The training set includes 6007 audio files from 8§ datasets,
while validation uses 587 files from 3 datasets (Casey2017, Ker-
guelen2014, Kerguelen2015).
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Figure 1: Overview of the sound event detection task showing dif-
ferent whale call types: Blue whale D and Z calls (BmD and BmZ),
and Fin whale calls including 20 Hz Pulse with (Bp20p) or with-
out (Bp20) overtone and 40Hz downsweep (BpD). (Image adapted
from BioDCASE Challenge 2025[1]])

2.2. Dataset Challenges

The dataset presents several characteristics that complicate detec-
tion:

Low Event Density: Whale calls occur in only 5.1% of the total
recording time, creating a highly imbalanced detection problem.

Acoustic Variability: Recordings come from different hy-
drophone deployments, water depths, and time periods, resulting
in varying background noise characteristics and propagation condi-
tions.

Annotation Complexity: The dataset includes potential anno-
tation inconsistencies due to subjective interpretation of call bound-
aries, fragmentation due to multipath propagation, and analyst vari-
ations in marking call starts/ends.
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Figure 2: Processing pipeline showing the sequence of operations
from raw audio to final whale call predictions.

Site-Specific Issues: Some datasets (Elephant Island, Balleny
Island) have known annotation gaps, while others (Casey, Maud
Rise) feature strong chorus bands that complicate single call de-
tection [6]].

2.3. Call Type Distribution

The three evaluation categories show uneven distribution: blue
whale calls (bmabz) are most common, followed by 20Hz+ calls
(bp), with D-calls (d) being least frequent. This imbalance mo-
tivates the use of class-specific confidence thresholds in post-
processing.

3. METHOD

3.1. Processing Pipeline Overview

Fig. [2illustrates the complete processing pipeline from raw audio
to final predictions.

3.2. Spectrogram Preprocessing Modifications

Based on analysis of whale call characteristics in the training data,
several preprocessing modifications are implemented to the stan-
dard spectrogram generation. Fig. [3]illustrates the visual impact of
these modifications on whale call visibility:

Pre-filtering: Applied a 5-124 Hz Butterworth bandpass filter
to remove frequencies outside the whale call range before spectro-
gram computation. This reduces noise and focuses processing on
relevant spectral content.

Magnitude Inversion: Inverted the spectrogram magnitude us-
ing szx = 1 — sxx. This modification changes the typical spectro-
gram appearance where whale calls appear as darker regions against
lighter backgrounds.
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Figure 3: Comparison of spectrogram preprocessing approaches
showing a blue whale Z-call. (a) Baseline: Whale calls appear
as faint horizontal patterns that may be difficult to distinguish
from background noise. (b) Enhanced: Pre-filtered (5-124 Hz),
magnitude-inverted, and 98th percentile normalized spectrogram.
The whale call (visible around 20-25 Hz) appears as a prominent
dark contour, making detection more reliable.

98th Percentile Normalization: Instead of standard min-max
normalization, used:

per = percentile(szx. flatten(), 98)

spp = ST = smxmm() )
per — sxx.min()

szxfsze > 1] =1

This approach reduces the impact of outlier values that may
vary across different recording conditions.

3.3. Temporal Sequence Generation

To incorporate temporal information, created 3-frame sequences:

Frame Selection: For each spectrogram frame, combined it
with the previous and next frames.

RGB Encoding: The three frames are arranged as RGB chan-
nels (previous=R, current=G, next=B).

Overlap Strategy: Adjacent sequences share frames, ensuring
continuous temporal coverage with 50% overlap between consecu-
tive triplets.

This allows the YOLO detector to process temporal patterns
while using standard computer vision architectures designed for
RGB images.

3.4. Object Detection Configuration

We use YOLOv11m [7] as the base detector with standard configu-
ration:

Model Architecture:
parameters

Input Format: RGB images (temporal sequences)
Classes: 3 categories (bmz, bpd, bp20plus)
Initialization: Pre-trained COCO weights

YOLOvI1m with approximately 20M

Training Parameters:

e Batch size: 16
e Training time: 8 hours on H100 GPU
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Table 1: Overall Performance Comparison

Method Fl-score Precision  Recall
Baseline YOLO 43.0% 67.0% 32.0%
This approach 59.45% 72.88%  51.93%

e Standard YOLO loss functions

e No additional data augmentation beyond temporal sequences

3.5. Post-processing

Based on validation set analysis, applied class-specific confidence
thresholds:
e bpd calls: 0.45 threshold
e bmz calls: 0.30 threshold
e bp20plus calls: 0.30 threshold
Applied Non-Maximum Suppression with IoU threshold 0.45,

followed by coordinate conversion to the required BioDCASE sub-
mission format.

4. EXPERIMENTAL SETUP

4.1. Implementation Details

Audio Processing: All audio files are processed in 30-second
chunks with 0.5 overlap step (15-second spacing between chunk
starts). Audio is resampled to 250 Hz to match dataset specifica-
tions.

Spectrogram Parameters:
o nfft: 512
e win_length: 256
e hop_length: 20
e Window: Hann
e Scaling: density

Temporal Processing: Each audio chunk generates multiple

spectrogram frames. Valid temporal sequences require at least 3
consecutive frames.

4.2. Evaluation Protocol
We followed the official BloDCASE evaluation methodology [[1]:

e Temporal IoU with 0.3 threshold for matching predictions to
ground truth

e Application of joining dictionary: {bma,bmb,bmz}—bmabz,
{bmd,bpd}—d, {bp20,bp20plus}—bp

e Per-class and per-dataset metrics computation

5. RESULTS

5.1. Validation Set Performance

Table [T] shows the overall performance compared to the baseline:
The approach shows improvement in both F1-score (+16.45%)
and recall (+19.93%) while maintaining similar precision levels.
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Table 2: Per-Dataset Results

Dataset Fl-score Precision Recall
Casey2017 55.73% 72.64%  52.23%
Kerguelen2014  61.78% 75.54%  43.76%
Kerguelen2015  60.67% 7221%  60.49%

Table 3: Per-Class Results After Joining

Class Fl-score Precision Recall Notes

bmabz  71.77% 73.38% 70.23% Blue whale calls

d 48.24% 75.52%  35.43%  D-calls (challenging)
bp 58.33% 69.73% 50.13% 20Hz+ calls

5.2. Per-Dataset Performance

Performance varies across datasets, with Kerguelen2015 showing
the best recall (60.49%) and Kerguelen2014 the best precision
(75.54%).

5.3. Per-Class Performance

Blue whale calls (bmabz) achieve the strongest performance, while
D-calls show the lowest recall, motivating the higher confidence
threshold for this class.

6. DISCUSSION

6.1. Analysis of Results

The preprocessing modifications provide measurable improvements
over the baseline YOLO approach. As illustrated in Fig. 3] the en-
hanced spectrogram processing significantly improves whale call
visibility compared to standard spectrograms. The 98th percentile
normalization appears to help with the varying acoustic conditions
across different Antarctic sites. The temporal sequences allow the
model to process call dynamics that single-frame spectrograms can-
not capture.

6.2. Method Limitations

Several limitations affect the approach:

Fixed Temporal Window: The 3-frame window may not cap-
ture the full duration of longer whale calls, which can extend beyond
three consecutive frames.

Class Imbalance: D-calls remain challenging to detect
(35.43% recall), suggesting the preprocessing may be less effective
for this call type.

Computational Overhead: The temporal sequence generation
increases data volume by 3x compared to single-frame processing.

6.3. Future Improvements
Potential improvements could include:

e Adaptive temporal window sizes based on call type

e More sophisticated normalization schemes for different acous-
tic environments
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e Ensemble methods combining different preprocessing ap-
proaches

e Extension to detect all seven individual call types rather than
three grouped categories

7. CONCLUSION

Here we present a modified approach for Antarctic whale call de-
tection that builds on the baseline YOLO framework with spec-
trogram preprocessing modifications and temporal sequence pro-
cessing. The method achieves 59.45% F1-score on the BioDCASE
challenge validation set, representing a 16.45% improvement over
the baseline performance. The approach demonstrates that domain-
specific preprocessing and temporal modeling can provide benefits
for marine acoustic detection tasks, though limitations remain, par-
ticularly for D-call detection. The results provide a foundation for
further development of automated whale call detection in passive
acoustic monitoring applications.
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