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1. ABSTRACT

W modified the provided BEATs baseline with three main changes.
First, we added cross-attention layers that allow audio embeddings
from different channels to interact before making alignment pre-
dictions. Second, improved the training process with better data
sampling, conservative augmentation (amplitude scaling and noise
addition), and AdamW optimization with learning rate scheduling.
Third, replaced the baseline’s binary counting similarity metric with
confidence-weighted scoring that uses the full range of model out-
puts. The system uses the same candidate generation approach as
the baseline but processes alignment decisions differently. On vali-
dation data, the method achieved MSE of 0.099 for ARU and 0.521
for zebra finch.

Index Terms— audio synchronization, multi-channel align-
ment, cross-attention, BEATs, clock drift

2. INTRODUCTION

Multi-channel audio synchronization addresses the problem of tem-
poral alignment between recordings from multiple devices that suf-
fer from nonlinear clock drift. The BioDCASE 2025 Task 1 chal-
lenge provides ARU and zebra finch datasets with desynchroniza-
tion up to ±5 seconds, where each audio file contains keypoints in-
dicating corresponding timestamps between channels (Figure 1).

Figure 1: Keypoint-based alignment visualization showing desyn-
chronized channels with corresponding timestamps (adapted from
BioDCASE 2025 challenge description [2]).

The provided baseline employs a BEATs encoder [1] with
binary classification to determine if audio clips are temporally
aligned. This work extends the approach with architectural mod-
ifications and improved training procedures.

3. METHOD

3.1. Architecture

The system extends the baseline BEATs encoder architecture with
cross-attention mechanisms that enable interaction between audio
embeddings from different channels before making alignment pre-
dictions. Figure 2 shows the complete system architecture.
Cross-Attention Module: A multi-head cross-attention layer [3] is
introduced (Figure 3) that processes concatenated embeddings from
both audio channels:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

where Q, K, and V are derived from the combined channel em-
beddings. This allows the model to capture temporal relationships
between channels more effectively than simple concatenation.
Enhanced MLP Head: The baseline’s single hidden layer MLP is
replaced with a deeper network including:
- Increased capacity (256-128-64-1 architecture)
- Layer normalization and GELU activations
- Residual connections for training stability
- Dropout regularization (0.1-0.05 schedule)

3.2. Training Improvements

Data Sampling: Modified the baseline’s random sampling by using
every 20th keypoint per file, providing better diversity while main-
taining temporal coverage.
Conservative Augmentation: Applied to 30% of samples:
- Amplitude scaling: ±10% variation
- Additive noise: SNR 40-50 dB
- Consistent augmentation across both channels
Optimization: Replaced Adam with AdamW (weight decay: 0.01)
and ReduceLROnPlateau scheduling for more stable training con-
vergence.

3.3. Confidence-Weighted Scoring

The key enhancement over the baseline lies in the scoring strategy.
Rather than relying on a binary count of predictions (i.e., summing
the number of outputs exceeding a threshold,

∑
(pred > 0)), the

system adopts a confidence-weighted scoring function that incorpo-
rates multiple aspects of the prediction distribution (see Figure 4,
Table 1):
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Figure 2: System Architecture Overview. Audio from both channels is processed through frozen BEATs encoders, then cross-attention allows
interaction between embeddings before the enhanced MLP predicts alignment scores.
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Figure 3: Cross-Attention Mechanism. Embeddings from both
channels are concatenated and processed through multi-head atten-
tion to capture cross-channel temporal relationships.

Score = 0.4 ·µpos · rpos +0.3 ·µtop +0.2 ·
∑
i

σ(pi)+0.1 · eµ (2)

where:

• µpos is the mean confidence score among positively predicted
instances,

• rpos is the ratio of positive predictions to the total number of
predictions,

• µtop denotes the mean of the top 25% prediction confidences
(i.e., the top quartile),

• σ(pi) is the sigmoid transformation applied to each prediction
score pi,

• µ is the global mean prediction score across all instances.

The final term, eµ, emphasizes predictions with globally high
confidence. The weights (0.4, 0.3, 0.2, 0.1) were empirically se-
lected to balance the influence of precision, coverage, and confi-
dence calibration.

Baseline Scoring

Binary Count

∑
(pred > 0)

Our Confidence Scoring
Mean Positive Top Quartile

Sigmoid Sum Exp Weight

Weighted

Figure 4: Scoring Mechanism Comparison. Our confidence-
weighted approach leverages multiple prediction statistics versus
the baseline’s simple binary counting.

3.4. Inference Process

The inference follows the baseline’s candidate generation approach
but modifies the scoring mechanism (Figure 5):

1. Generate candidate keypoint sets assuming linear drift + con-
stant offset

2. For each candidate set, extract 1-second audio clips at key-
point locations

3. Score each candidate using the enhanced model and confi-
dence weighting

4. Select the candidate with the highest confidence-weighted
score

Table 1 compares the scoring mechanisms in detail.
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Figure 5: Inference process comparison. Both approaches use iden-
tical candidate generation but differ in how predictions are scored
to select the best alignment.

Table 1: Scoring Mechanism Comparison
Aspect Baseline Our Method
Score Type Binary count Confidence

weighted
Formula

∑
(pred > 0) Weighted combina-

tion of 4 compo-
nents

Confidence Use Threshold only Full prediction
range

Information Loss High (binary) Low (continuous)

4. DATASET ANALYSIS

The challenge provides two datasets with different characteristics:
ARU Dataset: Contains 36 training files and 12 validation files

from passive automated recording units. Based on analysis, ARU
data exhibits higher drift variability.

Zebra Finch Dataset: Contains 108 training files and 16 val-
idation files from zebra finch recordings. This dataset shows more
consistent patterns .

Both datasets contain keypoints at 1-second intervals with drift
constrained to ±5 seconds. The domain shift between datasets
presents challenges for joint training approaches, as evidenced by
different optimal model parameters for each domain.

5. EXPERIMENTAL SETUP

Datasets: Used the provided ARU and zebra finch train/validation
splits without external data.

Training Configuration:
- Batch size: 32 (reduced to prevent O(B) memory scaling)
- Learning rate: 2×10−4 with ReduceLROnPlateau scheduling
- Epochs: 100 with early stopping (patience: 25)
- BEATs encoder frozen during training
- Optimizer: AdamW with weight decay 0.01

Hardware: Training performed on NVIDIA H100 GPU with
CUDA optimization and memory management (cache clearing
every 5 batches to prevent fragmentation).

6. RESULTS
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Figure 6: Validation MSE comparison across methods. Our ap-
proach achieves substantial improvements over all baselines on both
datasets.

Table 2 shows detailed validation results compared to the pro-
vided baselines.

Table 2: Validation MSE Results
Method ARU Zebra Finch
Nosync 0.976 1.315
Crosscor 6.861 10.029
Deep learning baseline 0.516 1.262
Ours 0.099 0.521

Our method achieved MSE reductions of 80.8% for ARU data
and 58.7% for zebra finch data compared to the deep learning base-
line (Figure 6).

7. ANALYSIS

Component Contributions: Confidence-weighted scoring pro-
vided the largest performance improvement, followed by cross-
attention mechanisms and training enhancements. The enhanced
MLP architecture improved training stability with modest accuracy
gains.
Dataset Differences: The method showed larger improvements on
ARU data compared to zebra finch data. This may be attributed to
ARU’s higher drift variability providing more diverse training sig-
nals for the cross-attention mechanism to learn from.
Limitations: The approach still relies on the baseline’s linear drift
assumption for candidate generation, which may not capture all
real-world drift patterns. The cross-attention mechanism adds com-
putational overhead during training, though this is mitigated by
freezing the BEATs encoder.

8. CONCLUSION

We presented modifications to the BEATs baseline for multi-
channel audio alignment. The combination of cross-attention mech-
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anisms, enhanced training procedures, and confidence-weighted
scoring produced improved performance on both ARU and zebra
finch datasets. The approach demonstrates that focused architec-
tural modifications and better utilization of model outputs can im-
prove alignment accuracy without requiring external data.

Future work could explore adaptive candidate generation based
on learned drift patterns and investigation of the cross-attention
mechanism’s learned temporal relationships.

9. REFERENCES

[1] Microsoft Research. BEATs: Audio Pre-Training with Acoustic
Tokenizers. arXiv preprint arXiv:2212.09058, 2022.

[2] Hoffman, B., Gill, L., Heath, B., Narula, G. BioDCASE
2025 Task 1: Multi-Channel Alignment. BioDCASE Challenge,
2025.

[3] Vaswani, A., et al. Attention is All You Need. Advances in Neu-
ral Information Processing Systems, 2017.

[4] Loshchilov, I., Hutter, F. Decoupled Weight Decay Regular-
ization. International Conference on Learning Representations,
2019.

[5] Sakoe, H., Chiba, S. Dynamic programming algorithm opti-
mization for spoken word recognition. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 26(1):43-49, 1978.

[6] Knapp, C., Carter, G. The generalized correlation method for
estimation of time delay. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 24(4):320-327, 1976.


	 ABSTRACT
	 INTRODUCTION
	 METHOD
	 Architecture
	 Training Improvements
	 Confidence-Weighted Scoring
	 Inference Process

	 DATASET ANALYSIS
	 EXPERIMENTAL SETUP
	 RESULTS
	 ANALYSIS
	 CONCLUSION
	 References

