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ABSTRACT

In this work, we present a sound event detection (SED) system fo-
cused on whale call detection. We propose a hybrid CNN-BiLSTM
architecture adapted from the voice activity detection (VAD) field
in order to perform coherent per-frame whale call activity detection.
In addition, we investigate the multi-objective regression task of
bounding box estimation in conjunction to activity detection. We
compare the performance of our system to a baseline mel spec-
trogram BiLSTM, and finetuned HuBERT system. As part of the
2025 BioDCASE challenge (Task 2), we also compare our system to
ResNet-18 and YOLOVv11 models. Each model has been trained
on a subset of the publically available ATBFL dataset. Our model
was able to best all models including the top performing YOLOv11
model on developmental results. The final model, trained using the
collapsed labels along with phase information, achieved an F1-score
of 0.44, across all developmental sets.

Index Terms— Whale Call Detection, Computational Bioacous-
tics, Sound Event Detection, Hybrid CNN-BiLSTM

1. INTRODUCTION

Passive acoustic monitoring (PAM) has enabled researchers to mon-
itor species in remote locations using non-invasive and relatively
low-cost methods. However, the large volumes of data generated can
be difficult to process, especially due to the typically low signal-to-
noise ratio (SNR) of such datasets [1]. This makes manual review
both time-consuming and expensive, requiring the need for trained
experts to annotate the large quantities of data.

To address this, many automated algorithms have been devel-
oped to detect and classify signals of interest. One focus has been the
detection and classification of blue and fin whale vocalisations. Blue
whales were driven nearly to extinction by the 20th-century whaling,
and as a result are still considered endangered today. Together with
fin whale, they are considered vulnerable by the IUCN red list [2],
[3]. Population densities for both species remain difficult to estimate
with confidence due to limited data availability [4].

Therefore, in this paper, we focus on developing a lightweight
whale call activity detector based on a convolutional bidirectional
long short-term memory neural network (CNN-BiLSTM) based on
a voice activity detection (VAD) framework originally proposed for
speech [5]. We explore a range of input features and demonstrate
that incorporating phase information from the short time Fourier
transform (STFT) can enhance model performance.

2. EXPERIMENTAL STRUCTURE

In this section, we describe the experimental setup used for sound
event detection (SED) on the challenge dataset. Figure 1 illustrates
the complete whale call activity detection system, used for sound
event detection (SED). First the audio is segmented and preprocessed,
each segment is provided to the model as input, with frame-level
classification targets produced from the boundary annotation file.
Each model consists of two parts: a feature extractor, that produces
high-dimensional vectors representative of the information contained
in the audio segment; and a classification model, tasked with produc-
ing a class membership probability from feature vectors, obtained at
each time instant.

2.1. Preprocessing

The training data consists of long continuous audio recordings, typ-
ically the result of PAM. Due to computational constraints, these
longer audio recordings were subdivided into shorter intervals, re-
ferred to as segments.

Each segment corresponds to the audio between the start and
end points of a human annotation, indicating the occurrence of a
particular call type. The segment is extended to include additional
audio before the start and at the end of the call, referred to as a collar.
The length of the collar is independently and randomly sampled from
a uniform distribution for both the start and end of each segment,
ensuring the call does not always appear in the centre of the segment.

An associated discrete classification target vector is constructed
from the annotations for each segment. In all experiments, one model
classification is computed every 20ms. As there may be overlapping
annotations, the problem is treated as multi-class multi-label. Conse-
quently, a binary label is assigned for each respective class at each
discrete time instant, independent of the other classes. If a human
annotation boundary intersects completely with the classification
target vector at a time instant, the label is set to true indicating the
presence of a particular call; otherwise, it remains false.

Additionally, segments without any vocalisation annotations are
included (Section 2.5). In such cases, the entire classification target
is set to false, indicating that no vocalisation has occurred.

The variable-length segments are gathered into a batch of fixed
length during preprocessing. To achieve this, each segment and the
associated classification target is padded to the length of the longest
segment in the batch. However, padding is removed from each
segment during loss calculation and model weight backpropagation.

During evaluation (either validation or testing), when human
annotations are not available, segments are generated by subdividing
the continuous audio recordings into regularly spaced segments
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Figure 1: Illustration depicting the whale call activity detection system overview and experimental setup.

with a fixed length of 30 s and a 2 s overlap. The postulated model
classification probabilities are averaged over this overlap.

2.2. Feature extractor

The feature extraction model is provided with the entire segment of
audio samples obtained from a part of the larger continuous audio
recording (Section 2.1). In this work, we only consider spectral and
cepstral features.

First, a spectrogram representation is computed using a 1 s (ap-
prox.) frame length and 20ms stride between frames. The long
frame length was motivated by the low fundamental frequency of
the whale calls. The frame stride was dictated by the desired clas-
sification resolution, which was fixed at 20ms, to allow for direct
comparison of loss figures between experiments (Section 2.1). A
Hanning window is applied to each frame, without additional zero
padding. A 256-point fast Fourier transform (FFT) is computed,
resulting in 129 frequency bins (incl. DC) – resulting in the final
spectrogram representation.

The power spectrum is compressed into 64 bins using a bank of
triangular filters with a mel-scale spacing. The final sequence of mel
frequency cepstral coefficients (MFCCs) are obtained by applying
the discrete cosine transform (DCT) to the resulting binned spectrum,
and retaining the lower 20 coefficients.

After the features are obtained, mean spectral and cepstral sub-
traction is performed, respectively. The mean is computed for each
frequency bin independently, over the entire duration of the segment.

2.3. Baseline classification model

From the sequence of features obtained from the feature extractor,
the call posterior probabilities are computed using a classification
model with sigmoid activation functions at the outputs. We evaluate
two classification model architectures: logistic regression (LR) and
bidirectional long short-term memory networks (BiLSTMs).

In early experiments, LR was utilised primarily as a means of op-
timising dataset and experimental hyperparameters. Informally, we
observed that LR models struggled to maintain high call probabilities
over the entire duration of a call segment (θ > 0.5). Specifically,
these models would perform well for start-point detection, but they
would not perform well in call endpointing.

As a recurrent architecture, a BiLSTM model was chosen and
configured with between one and four hidden layers; a hidden di-
mension size of 64, 128, or 256; and layer dropout of between 20%
and 50%. We found that the recurrent model was prone to over-
fit, but that increased dropout reduced this risk. The posterior call
probabilities produced by these models aligned well with the call
segments. Informally, it was observed that both the start and end
boundaries produced by the recurrent models closely matched those
of the human annotators.

2.4. Whale vocalisation activity detector

We propose a whale call activity detection system inspired by the
AVA-VAD system proposed in Wilkinson and Niesler [5]. We alter
the AVA-VAD system by introducing a residual bottleneck network
and a depthwise convolutional neural network (CNN). Furthermore,
instead of using a mel spectrogram as input, we utilise the spectro-
gram features directly and apply a linear convolution layer to act as
a learnable filterbank. Figure 2 provides an overview of the model
architecture.

The spectrogram is computed using the same configuration as,
described in Section 2.2. However, during experimentation, we
found that including phase information substantially improves de-
tection performance. Thus, instead of the power spectrum typically
utilised as feature, we provide the model with a three-dimensional
representation of each complex spectral component (z) as follows:

z = r(cos θ + i sin θ); x
(n)
k =

 r
cos θ
sin θ


where r is the spectral magnitude and θ is the phase. Now x

(n)
k is

the model input at time instant n and discrete frequency k.
The learnable filterbank consists of a linear convolutional layer.

The one-dimensional kernel is convolved with each vector of ener-
gies constituting the spectrogram. This output is then passed through
a two layer CNN with max pooling, GELU activation and batch nor-
malisation. This is followed by a bottleneck network consisting of
three convolutional layers, each with GELU activation, compressing
the features to a lower dimensional representation. This represen-
tation is passed through three depthwise convolutional layers, with
restricted cross-terms in the filter kernel. This configuration acts as
a feature aggregation network. The output of the feature extractor,
bottleneck network and depthwise convolutions are residually con-
nected. Table 1 provides a summary of the CNN layer configuration
employed by the final Whale-VAD model.

The residual output connection is passed through a linear dimen-
sionality reduction layer with an output dimension of 64. Padding
has been applied to each of the CNN layers such that the number
of output activations remains consistent with the number of input
frames. These latent features are then recurrently processed by a
BiLSTM network. Finally, a linear layer with sigmoid activations
produces the model call probabilities.

We further investigate two input regularisation techniques: spec-
tral augmentation [6] and noise perturbation. For noise perturbation,
we inject Gaussian noise into the audio signal such that the resulting
SNR of the original signal to the perturbed signal is 10 dB.

2.5. Stochastic negative mini-batch undersampling

Analysis of the challenge dataset revealed that whale vocalisations
are a rare occurrence, with a prevalence of approximately 5%. There-
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Figure 2: Illustration of Whale-VAD system, for whale call activity
detection.

Table 1: Summary of Whale-VAD model layer configuration. The
kernel size (K), stride (S), number of input channels (Cin) and
output channels (Cout), are shown.

Layer K S Cin Cout

Filterbank (7, 1) (3, 1) 1 64

Feature extractor
⌞ Conv2D (5, 5) (3, 1) 64 128
⌞ Max pool (5, 1) (1, 1) – –
⌞ Conv2D (3, 3) (2, 1) 128 128
⌞ Max pool (3, 1) (1, 1) – –

Bottleneck network
⌞ Conv2d (1, 1) (1, 1) 128 64
⌞ Conv2d (3, 3) (1, 1) 64 64
⌞ Conv2d (1, 1) (1, 1) 64 128

Depth. Conv2d (3, 3) (1, 1) 128 128

fore, we propose a technique where, during each epoch of finetuning,
we sample a different subset of negative segments (containing no
calls) while simultaneously ensuring that there are approximately as
many negative as positive segments, per mini-batch. This ratio was
anecdotally found through a limited set of experiments comparing
the binary cross entropy loss (non-weighted) on the validation set
for different subsampling values, using a LR classifier. Furthermore,
after each epoch of training, a different subset of negative segments
is sampled. The set of positive calls remains consistent for each
epoch during finetuning.

2.6. Loss function

For our experiments, we consider weighted binary cross-entropy
(BCE) and focal loss as the chosen loss functions. We found that
when computing the class weighting, rather than normalising by the
duration of each class, it was better to normalise by the number of
segments belonging to each class. When considering weighted BCE,
we compute the weighting wc for each class c as follows:

wc =
N

Pc

where N denotes the total number of negative (no-call) segments
and Pc denotes the number of positive (call) segments belonging to
a particular class c.

In addition to weighted BCE, we also evaluate the use of focal
loss [7], a modified cross-entropy loss designed to focus training
on hard-to-classify examples by reducing the contribution of easy
examples. In our experiments, we set the class imbalance term to
0.25 and focus term to 2, following the recommendations in the
original paper.

For all experiments, we rely on AdamW [8] as the numerical
optimiser. Unless otherwise stated, the optimiser was configured
with an initial learning rate of 1 × 10−5, momentum terms of 0.9
and 0.999, and a weight decay factor of 0.001.

2.7. Transfer learning

Beyond our baseline (MFCC + BiLSTM) and Whale-VAD models,
we investigate the efficacy of a finetuned HuBERT [9] model (ini-
tialised with pretrained weights) and a classifier (Section 2.3) to
achieve whale call activity detection. The HuBERT model is an
end-to-end automatic speech recognition (ASR) model that contains
a CNN feature extractor and transformer encoder with self-attention.
The HuBERT has roughly 95M parameter weights, while our base-
line has 125 k and Whale-VAD 1.1M. HuBERT natively requires
a sampling rate of 16 kHz and thus the audio was upsampled to
match. Finetuning was performed using transfer learning with a
learning rate scheduler in order to attempt to preserve knowledge
built up during the pretraining phase and to reduce the chance of
overfitting [10]. In this transfer learning process, the classification
model (initialised with random weights) is allowed weight updates
for the first five epochs of training, while the HuBERT backbone is
not allowed any weight updates. During this period of model training,
the backbone acts as an embedding model. All early stopping logic is
suspended until this stage. After which, the backbone model weights
are updated using a learning rate 10% of the current learning rate
of the classification model. Over the next two epochs, the learning
rate is increased gradually to match the learning rate (global) of the
classification model.

2.8. Multi-objective regression

The challenge dataset contained not only annotations in time, but
also in frequency (bounding box). The best-performing baseline
YOLO model, provided by the organisers, uses these box-level an-
notations. In addition to our Whale-VAD system (Section 2.4), we
evaluated a bounding box regression network. The network is based
on the same latent features used by the classification model, with
the addition of an adaptive pooling layer in order to reduce the time
dimension. These reduced latent features are presented to two inde-
pendent multi-layer perceptron (MLP) networks, each consisting of
three layers, with GELU activation and dropout after each hidden
layer. Each of the regression networks is applied to the 64 channels
from the adaptive pooling layer, which is the maximum number of
anchors (bounding boxes) the model can produce per input segment.
The first network has a four dimensional output, corresponding to the
bottom left and top right corners of the bounding box. The second
network produces a confidence score, corresponding to the presence
of the bounding box. Figure 2 illustrates the additional bounding box
regression model. The regression model is trained using smoothed
L1 loss function [11]. Note that the regression model only forms part
of a multi-objective training regime, where the regression and classi-
fication loss are jointly optimised. The regression outputs (bounding
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Table 2: Final development set results for the organisers models
ResNet18 and YOLOv11, baseline MFCC, HuBERT, AVA-VAD
and Whale-VAD models. Scores are averaged across all call types
and validation sets. Improvement is calculated relative change in F1
score.

Experiment Improvement Recall Precision F1-score

ResNet18 – 0.36 0.29 0.32
YOLOv11 – 0.32 0.67 0.43

MFCCs + BiLSTM – 0.409 0.226 0.291
HuBERT + BiLSTM – 0.064 0.104 0.079
AVA-VAD [5] – 0.310 0.219 0.245

Whale-VAD – 0.424 0.207 0.278
+ Phase information +30.0% 0.461 0.316 0.375
⌞+ Noise perturbation +1.2% 0.413 0.335 0.370
⌞+ Augmentation -13.5% 0.391 0.335 0.361
⌞+ Bounding box reg. -22.1% 0.380 0.262 0.310
⌞+ Focal loss +8.0% 0.484 0.348 0.405
⌞+ Three class problem +15.2% 0.461 0.420 0.440

boxes) are not used for final model evaluation. We postulate that
training the network to jointly optimise the model on both tasks may
lead to improved classification performance.

2.9. Postprocessing

After model training is completed, the best model is chosen based
on the lowest BCE validation loss. The classification thresholds θc
are selected per class c, from the precision-recall curve on a held
out set, and the point chosen with the best F1-score on the held out
set. The resulting per call threshold θc is applied to the posterior
call probabilities computed by the model, to obtain the final binary
model output labels. The output labels are then post-processed to
reduce overlap, fragmentation, and duplication.

The 7-class output of the classifier is collapsed into the 3-class
variant, posed by the challenge organisers. While this approach may
occasionally merge overlapping calls of different subcall types, such
occurrences are infrequent in the training and validation datasets and
are considered an acceptable trade-off for improved overall accuracy.

The resulting binary labels are then used to generate annotations
with start and end boundaries relative to the start of the recording.
These annotations are further refined by merging overlapping calls of
the same type, eliminating duplicates, and joining calls separated by
less than 500ms to reduce instances where an event is momentarily
missed by the model. Finally, calls that are either too long or too short
are discarded, based on duration constraints derived from empirical
statistics.

3. RESULTS

It is evident from Table 2 that both spectral and cepstral models
significantly outperform the finetuned HuBERT model. Furthermore,
a series of enhancements to the spectral CNN-BiLSTM architecture
led to notable performance gains. Most significantly, incorporat-
ing phase information resulted in a 30% improvement in F1-score.
Training the model on collapsed labels yielded an additional 15.2%
increase, achieving a final F1-score of 0.440. Table 3 and Fig. 3 pro-
vides a detailed break-down of our best performing model’s results
per development set.
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Figure 3: Precision-recall curves for the validation sets using the
top-performing Whale-VAD model.

Table 3: Detailed development set results for the top-performing
Whale-VAD model using the trigonometric complex representa-
tion as input features and training with the collapsed labels using
weighted binary cross-entropy (BCE).

Dataset Label TP FP FN Recall Precision F1

casey2017 bmabz 1984 1956 434 0.821 0.504 0.624
casey2017 d 179 5928 374 0.324 0.029 0.054
casey2017 bp 5 101 287 0.017 0.047 0.025

kerguelen2014 bmabz 2739 1120 1558 0.637 0.710 0.672
kerguelen2014 d 229 2248 550 0.294 0.092 0.141
kerguelen2014 bp 1391 663 2355 0.371 0.677 0.480

kerguelen2015 bmabz 2137 2676 611 0.778 0.444 0.565
kerguelen2015 d 366 2545 1158 0.240 0.126 0.165
kerguelen2015 bp 665 355 605 0.524 0.652 0.581

4. CONCLUSION

During development, several finetuned self-supervised transformer
models were explored, including HuBERT. While these models
showed some promise, none achieved performance comparable to
that of the simpler detector-based models, despite their very large
number of parameters and success in other tasks. We attribute this
gap primarily to the low sampling rate of the recordings, which is
only 250Hz. Given that the pretrained transformer models were
developed for audio sampled at 16 kHz, it is likely that the 250Hz
sampling rate lacks sufficient frequency content for accurate call
detection, with the base architecture.

While the majority of prior research on SED has disregarded
phase information in the STFT, considering it to be redundant in
speech processing tasks, we have demonstrated that incorporating
it for whale call classification can improve model performance by
as much as 30% compared to models trained solely on magnitude
features, alone. This finding opens avenues for future research
in bioacoustics to reconsider the role of phase in time-frequency
representations, particularly in the design of feature extractors and
model architectures that can more effectively exploit both magnitude
and phase components.
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