
Evaluation and Benchmarking in Automated Bioacoustics 2025 Challenge

CONVOLUTIONAL NEURAL NETWORK WITH KNOWLEDGE DISTILLATION FOR
RESOURCE-CONSTRAINED BIOACOUSTICS

Technical Report

Naveen Dhar

High Tech High Mesa
San Diego, CA 92111, USA
naveendhar8030@gmail.com

ABSTRACT

The shift toward ”tiny” machine learning enables the deployment of
sophisticated audio classification models directly on power-efficient
hardware, offering numerous benefits: immediate threat detection,
lower latency for conservation insight, and vastly increased op-
erational lifetimes in remote environments. However, these ad-
vantages come with constraints on memory, computational power,
and energy consumption, necessitating unique approaches in both
model architecture and feature extraction, in an environment where
traditional deep learning methods negate practicality despite ac-
curacy. A pipeline utilizing knowledge distillation and a custom
Convolutional Neural Network (CNN) was developed for resource-
constrained bioacoustics and evaluated on Task 3 of the 2025 BioD-
CASE challenge: detecting Yellowhammer bunting vocalizations
in near and far-field environments using a lightweight model. The
proposed network was built upon the BioDCASE baseline system,
utilizing MobileNet convolution and depthwise convolution blocks,
giving the name ”SlimCNN”. A larger ”SlimCNN” was used as a
teacher, and a smaller version was used as a student during knowl-
edge distillation. Due to the nature of the task, ways to improve or
maintain performance while maintaining or lowering architecture
size, such as data augmentation, weight pruning, and adjustment
of feature creation parameters, were given attention. The proposed
”SlimCNN” achieved a 0.994 average precision on the provided val-
idation dataset and a 13KB file size when quantized, demonstrating
the potential for efficient machine learning.

Index Terms— Bioacoustics, BioDCASE, tiny-ML, au-
tonomous recording units, CNN, GRU, CRNN, knowledge distil-
lation

1. INTRODUCTION

The deployment of machine learning models on resource-
constrained hardware platforms represents a critical frontier in bioa-
coustic monitoring, where traditional deep learning approaches sac-
rifice practicality for accuracy. Autonomous recording units de-
ployed in remote environments demand models that balance clas-
sification performance with severe constraints on memory foot-
print, computational complexity, and power consumption. This
challenge becomes particularly acute in conservation applications
where immediate threat detection and extended operational life-
times are paramount. Task 3 of the 2025 BioDCASE challenge
addresses this fundamental tension by requiring participants to de-
velop lightweight models capable of accurate bird vocalization de-

tection. This investigation presents a comprehensive model com-
pression pipeline that integrates knowledge distillation, magnitude-
based pruning, and quantization-aware training to achieve efficient
avian call classification. The approach maintains robust perfor-
mance across varying signal-to-noise conditions and recording dis-
tances through strategic architecture design, data augmentation, and
training methodologies.

The competition utilized a curated dataset of Yellowhammer
bird vocalizations, encompassing over two hours of two-second
recordings sampled at 16kHz. The dataset comprised songs from
multiple individual birds captured at varying recording distances,
spanning 6.5 to 200 meters, which included a wide range from low
to high Signal-to-Noise Ratio (SNR) recordings. Recordings were
also obtained from different habitat types, specifically forest and
grassland environments. The dataset incorporated negative sam-
ples, consisting of other bird species vocalizations along with back-
ground noise. Across the entire dataset, calls from twelve individual
Yellowhammer birds were recorded and partitioned by individual.
The training set contains recordings from eight individual birds,
while the validation set includes recordings from two separate in-
dividuals. Two additional individuals are designated for the final
evaluation phase.

2. METHODS

2.1. Preprocessing

The challenge required participants to follow a predefined prepro-
cessing system that generated log-mel spectrograms from wave-
forms, but spectrogram parameter adjustment was allowed and en-
couraged. A window length of 1024 samples out of 16kHz*2sec or
48000 samples was chosen, with 50% overlap or a window stride
of 512 samples. Frequencies were bounded between 1000Hz and
7500Hz, enabling representation of harmonic features with 64 Mel-
frequency bins.

The parameters produced spectrograms of length 61 (time) and
width 64 (frequency), and offered a tradeoff between temporal-
frequency resolution and input size.

2.2. Architectures

The ”SlimCNN” consisted of a convolutional section and a classi-
fication section. The same network structure was used by both the
teacher and student models during knowledge distillation, the only
difference being filter size. The general architecture starts with one
initial MobileNet convolutional block, followed by four depthwise
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Yellowhammer Call (Log-Mel Spectrogram)

Figure 1: Example of Yellowhammer call displayed through a Log-
Mel spectrogram using the parameters described in ??.

separable convolutional blocks. These convolutional layers were
followed by a two-dimensional global max pooling layer that main-
tained dimensions and a flattening layer. The flattened features were
then fed to a two-unit fully-connected layer with softmax activa-
tion. Dropout was used after the last depthwise convolutional layer.
For the teacher model, both the initial convolutional block and the
first depthwise convolutional block had 32 filters, and the remaining
depthwise convolutional blocks each had 64 filters.

2.3. Augmentation

To reduce false-negative and false-positive classifications and im-
prove generalizability, augmentations were performed dynamically.
The BioDCASE Task 3 baseline system was modified to enable
dynamical augmentation in the training process by removing the
caching of the training dataset. This also allowed dynamic reshuf-
fling of the training data, ensuring samples were not only slightly
different in content but also appeared in a different order each
epoch.

SpecMixup, or simply the overlaying of a negative spectrogram
on top of a positive spectrogram, was performed alongside the addi-
tion of Gaussian noise, creating more examples of far-field or low-
SNR recordings. Because completely reducing the discerning fea-
tures of already low-SNR Yellowhammer calls completely through
the augmentation process was unwanted, the intensity of the aug-
mentation was filtered based on a simple calculation for an SNR
estimate. For each positive spectrogram in every training dataset
batch, the flattened max and median were calculated. If the differ-
ence between the two was greater than the 70th percentile across
all positive samples, background noise and SpecMixup augmenta-
tion bounds were modified, increasing in intensity. This produced
low-SNR Yellowhammer recordings only from pools of relatively
high-SNR Yellowhammer recordings. Each augmentation had a
30% chance of occurring, and neither negative samples nor vali-
dation dataset samples were augmented.
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Figure 2: A display of the augmentations performed. The top spec-
trogram (a), has no augmentation. The middle spectrogram (b)
has Gaussian noise augmentation. The bottom spectrogram (c) has
overlay augmentation.
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2.4. Knowledge Distillation and Training

Knowledge distillation was employed to dramatically reduce file
size with minimal loss in performance, crucial for tasks such as
real-time edge deployment for resource-constrained bioacoustics.

The teacher ”SlimCNN” model was trained for 30 epochs us-
ing the Adam optimizer, binary cross-entropy loss, and a batch size
of 32. The Keras model checkpoint callback was used to save the
epoch with the best validation average precision. This model check-
point served as the teacher model during knowledge distillation,
transferring the learned representations to the student model.

The student model architecture was a slimmed version of the
teacher ”SlimCNN” architecture: only two depthwise convolutional
layers instead of four and a 50% compression of the convolutional
filters.

The distillation framework implemented a combined loss func-
tion:

LTOTAL = α× LKD + (1− α)× LCE (1)

Where LKD represents the Kullback-Leibler divergence be-
tween teacher and student soft predictions, LCE denotes the standard
cross-entropy loss, and α (set to 0.5) balances the contribution of
each component. Temperature scaling softened the teacher’s prob-
ability distributions and was used with a scaling parameter of 3.0.

During knowledge distillation training, cosine decay was used
to schedule the learning rate. Training occurred for 25 epochs using
the Adam optimizer, an initial learning rate of 0.001, and a batch
size of 32. The same augmentation parameters used for training
the teacher model were also applied during knowledge distillation
training to ensure the student model would be robust to potential
low-SNR recordings.

2.5. Pruning and Quantization

To further reduce model file size, the student model’s weights were
pruned following distillation.

Structured pruning using Tensorflow Model Optimization elim-
inated redundant network connections through magnitude-based
weight reduction. The pruning schedule implemented polynomial
sparsity increase from 0% to 35% over 8 epochs, or 896 training
steps, selectively targeting convolutional and dense layers while
preserving batch normalization and activation functions. Training
during pruning utilized moderate data augmentation, with reduced
probabilities (p = 0.15).

The final compression stage implemented Quantization-Aware
Training (QAT) to support INT8 inference deployment for resource-
constrained edge devices.

The QAT process annotated network layers with fake quanti-
zation operations, simulating reduced precision arithmetic during
forward propagation while maintaining full precision gradients for
backpropagation. Batch normalization layers received no quantiza-
tion configurations to prevent numerical instability, while remain-
ing layers underwent standard quantization annotation. QAT ran
for six epochs with the Adam optimizer and a small learning rate
of 0.0001. A minimal level of augmentation (p = 0.05) was cho-
sen during QAT to stabilize convergence amid the noise introduced
from the QAT process.
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Figure 3: Precision-Recall curves for the proposed ”SlimCNN”
models on the validation dataset. ”AP” denotes average precision.
Knowledge distillation retained almost all original performance.

Model File Size Average Precision

”SlimCNN” Teacher 151KB 0.991
”SlimCNN” Student 69KB 0.994
”SlimCNN” TFLite 13KB 0.966

Table 1: Table illustrating model file size reduction alongside per-
formance. Metrics were derived from the validation dataset, and
sizes for the non-TFLite models were derived from the file size of a
weights-only model.
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Figure 4: The confusion matrix on the validation dataset for the
”SlimCNN” student model. Classification made using the threshold
that produces the highest F1.
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3. RESULTS

The proposed SlimCNN architecture demonstrated robust classifi-
cation performance across the stages of the compression pipeline,
illustrated in Fig. ??. The teacher model achieved 0.991 average
precision, with knowledge distillation, interestingly, improving per-
formance to 0.994 average precision in the student model. This
performance improvement, while uncommon in knowledge distil-
lation, can possibly be attributed to the regularization effect of the
distillation process, acting as a fine-tuning process. The confusion
matrix (Figure 4) reveals an error rate of 2.5%, defined as:

Error Rate =
FP + FN

TP + TN + FP + FN
(2)

The low misclassification rate demonstrates the architecture’s
discriminative capacity for Yellowhammer vocalizations, aided by
dynamic augmentation. As seen in Table ??, the final quantized
model achieved 0.966 average precision at a file size of 13KB, rep-
resenting a reduction of 91.4% from the teacher model size while
retaining 97.5% of the teacher’s performance. This indicates effec-
tive knowledge transfer and robust feature representation learning
throughout the compression process.

4. CONCLUSION

This investigation demonstrates that systematic model compres-
sion techniques can achieve substantial reductions in computa-
tional requirements while preserving classification performance for
bioacoustic applications. The proposed SlimCNN architecture,
compressed through knowledge distillation and quantization-aware
training, achieved an approximately 12-fold reduction in model size
from 151KB to 13KB while retaining 97.5% of the original perfor-
mance (0.966 vs 0.991 average precision). The sequential com-
pression pipeline—employing progressive augmentation strategies
from full intensity during distillation to minimal augmentation dur-
ing quantization—proved effective in maintaining feature learning
robustness throughout the optimization process. These results sug-
gest significant potential for deploying sophisticated acoustic mon-
itoring systems on ultra-low-power hardware platforms, enabling
extended autonomous operation in remote conservation environ-
ments. The framework’s success on Yellowhammer detection in-
dicates broader applicability to diverse bioacoustic classification
tasks, where the balance between model sophistication and deploy-
ment constraints remains a persistent challenge. Future work should
investigate the scalability of this approach across multi-species de-
tection scenarios and evaluate real-world deployment performance
on embedded hardware platforms to validate the practical implica-
tions of these compression techniques for conservation monitoring
applications.


