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ABSTRACT

The shift toward ”tiny” machine learning enables the deployment of
sophisticated audio classification models directly on power-efficient
hardware, offering numerous benefits: immediate threat detection,
lower latency for conservation insight, and vastly increased opera-
tional lifetimes in remote environments. However, these advantages
come with constraints on memory, computational power, and en-
ergy consumption, necessitating unique approaches in both model
architecture and feature extraction, in an environment where tra-
ditional deep learning methods negate practicality despite accu-
racy. A pipeline utilizing knowledge distillation and a custom Con-
volutional Recurrent Neural Network (CRNN) was developed for
resource-constrained bioacoustics and evaluated on Task 3 of the
2025 BioDCASE challenge: detecting Yellowhammer bunting vo-
calizations in near and far-field environments using a lightweight
model. The proposed network was built upon the BioDCASE base-
line system, utilizing MobileNet convolution and depthwise convo-
lution blocks, which preceded a Gated-Recurrent Unit (GRU), giv-
ing the name ”MobileGRU”. A larger ”MobileGRU” was used as a
teacher, and a smaller version was used as a student during knowl-
edge distillation. Due to the nature of the task, ways to improve or
maintain performance while maintaining or lowering architecture
size, such as data augmentation, weight pruning, and adjustment
of feature creation parameters, were given attention. The proposed
”MobileGRU” CRNN achieved a 0.993 average precision on the
provided validation dataset and a 34KB file size when quantized,
demonstrating the potential for efficient machine learning.

Index Terms— Bioacoustics, BioDCASE, tiny-ML, au-
tonomous recording units, CNN, GRU, CRNN, knowledge distil-
lation

1. INTRODUCTION

The deployment of machine learning models on resource-
constrained hardware platforms represents a critical frontier in bioa-
coustic monitoring, where traditional deep learning approaches sac-
rifice practicality for accuracy. Autonomous recording units de-
ployed in remote environments demand models that balance clas-
sification performance with severe constraints on memory foot-
print, computational complexity, and power consumption. This
challenge becomes particularly acute in conservation applications
where immediate threat detection and extended operational life-
times are paramount. Task 3 of the 2025 BioDCASE challenge
addresses this fundamental tension by requiring participants to de-

velop lightweight models capable of accurate bird vocalization de-
tection. This investigation presents a comprehensive model com-
pression pipeline that integrates knowledge distillation, magnitude-
based pruning, and quantization-aware training to achieve efficient
avian call classification. The approach maintains robust perfor-
mance across varying signal-to-noise conditions and recording dis-
tances through strategic architecture design, data augmentation, and
training methodologies.

The competition utilized a curated dataset of Yellowhammer
bird vocalizations, encompassing over two hours of two-second
recordings sampled at 16kHz. The dataset comprised songs from
multiple individual birds captured at varying recording distances,
spanning 6.5 to 200 meters, which included a wide range from low
to high Signal-to-Noise Ratio (SNR) recordings. Recordings were
also obtained from different habitat types, specifically forest and
grassland environments. The dataset incorporated negative sam-
ples, consisting of other bird species vocalizations along with back-
ground noise. Across the entire dataset, calls from twelve individual
Yellowhammer birds were recorded and partitioned by individual.
The training set contains recordings from eight individual birds,
while the validation set includes recordings from two separate in-
dividuals. Two additional individuals are designated for the final
evaluation phase.

2. METHODS

2.1. Preprocessing

The challenge required participants to follow a predefined prepro-
cessing system that generated log-mel spectrograms from wave-
forms, but spectrogram parameter adjustment was allowed and en-
couraged. To ensure enough temporal resolution for learning recur-
rent features, a window length of 512 samples out of 16kHz*2sec
or 48000 samples was chosen, with 75% overlap or a window stride
of 384 samples. Frequencies were bounded between 2000Hz and
7500Hz, enabling representation of harmonic features with 32 Mel-
frequency bins.

The parameters produced spectrograms of length 84 (time) and
width 32 (frequency), and offered a tradeoff between temporal res-
olution and input size.

2.2. Architectures

The ”MobileGRU” consisted of a convolutional section, followed
by a recurrent section, and finally a classification section, and the
network structure was used by both the teacher and student model
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Yellowhammer Call Log-Mel Spectrogram

Figure 1: Example of Yellowhammer call displayed through a Log-
Mel spectrogram using the parameters described in 2.1.

during knowledge distillation, the only difference being filter size
and dropout rate. The general architecture starts with one initial
MobileNet convolutional block, followed by three depthwise sep-
arable convolutional blocks. These convolutional layers were fol-
lowed by a two-dimensional global max pooling layer, a stacking
of the frequency and channel dimensions, and a GRU layer that re-
turned sequences. Those outputs were then fed for classification by
first performing a one-dimensional global average pooling, then be-
ing fed to a fully-connected layer, and then finally a two-unit fully-
connected layer with softmax activation. Dropout was used after the
GRU layer. For the teacher model, 32 filters were used for the initial
convolutional block, GRU layer, and penultimate fully-connected
layer. The depthwise convolutional blocks used 64 filters.

2.3. Augmentation

To reduce false-negative and false-positive classifications and im-
prove generalizability, augmentations were performed dynamically.
The BioDCASE Task 3 baseline system was modified to enable
dynamical augmentation in the training process by removing the
caching of the training dataset. This also allowed dynamic reshuf-
fling of the training data, ensuring samples were not only slightly
different in content but also appeared in a different order each
epoch.

SpecMixup, or simply the overlaying of two spectrograms, was
performed alongside the addition of Gaussian noise, creating more
examples of far-field or low-SNR recordings. Because completely
reducing the discerning features of already low-SNR Yellowham-
mer calls completely through the augmentation process was un-
wanted, the intensity of the augmentation was filtered based on a
simple calculation for an SNR estimate. For each positive spectro-
gram in every training dataset batch, the flattened max and median
were calculated. If the difference between the two was greater than
the 70th percentile across all positive samples, background noise
and SpecMixup augmentation bounds were modified, increasing in
intensity. This produced low-SNR Yellowhammer recordings only
from pools of relatively high-SNR Yellowhammer recordings. Each
augmentation had a 30% chance of occurring, and neither negative
samples nor validation dataset samples were augmented.

2.4. Knowledge Distillation and Training

Knowledge distillation was employed to dramatically reduce file
size with minimal loss in performance, crucial for tasks such as
real-time edge deployment for resource-constrained bioacoustics.

The teacher ”MobileGRU” model was trained for 30 epochs
using the Adam optimizer, binary cross-entropy loss, and a batch
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Figure 2: A display of the augmentations performed. The top spec-
trogram (a), has no augmentation. The middle spectrogram (b)
has Gaussian noise augmentation. The bottom spectrogram (c) has
overlay augmentation.

size of 32. The Keras model checkpoint callback was used to save
the epoch with the best validation average precision. This model
checkpoint served as the teacher model during knowledge distilla-
tion, transferring the learned representations to the student model.

The student model architecture was a slimmed version of the
teacher ”MobileGRU” architecture: only two depthwise convolu-
tional layers instead of three, a 25% compression of the convolu-
tional filters, resulting in 24 then 48 filters, and a 50% compression
of the GRU and penultimate fully-connected filters, resulting in 16
filters for each.

The distillation framework implemented a combined loss func-
tion:

LTOTAL = α× LKD + (1− α)× LCE (1)

Where LKD represents the Kullback-Leibler divergence be-
tween teacher and student soft predictions, LCE denotes the standard
cross-entropy loss, and α (set to 0.5) balances the contribution of
each component. Temperature scaling softened the teacher’s prob-
ability distributions and was used with a scaling parameter of 3.0.

During knowledge distillation training, cosine decay was used
to schedule the learning rate. Training occurred for 25 epochs using
the Adam optimizer, an initial learning rate of 0.001, and a batch
size of 32. The same augmentation parameters used for training
the teacher model were also applied during knowledge distillation
training to ensure the student model would be robust to potential
low-SNR recordings.
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Figure 3: Precision-Recall curves for the proposed ”MobileGRU”
models on the validation dataset. ”AP” denotes average precision.
Knowledge distillation retained almost all original performance.

2.5. Pruning and Quantization

To further reduce model file size, the student model’s weights were
pruned following distillation.

Structured pruning using Tensorflow Model Optimization elim-
inated redundant network connections through magnitude-based
weight reduction. The pruning schedule implemented polynomial
sparsity increase from 0% to 35% over 8 epochs, or 896 training
steps, selectively targeting convolutional and dense layers while
preserving batch normalization and activation functions. Training
during pruning utilized moderate data augmentation, with reduced
probabilities (p = 0.15).

The final compression stage implemented Quantization-Aware
Training (QAT) to support INT8 inference deployment for resource-
constrained edge devices.

The QAT process annotated network layers with fake quanti-
zation operations, simulating reduced precision arithmetic during
forward propagation while maintaining full precision gradients for
backpropagation. Batch normalization layers received no quantiza-
tion configurations to prevent numerical instability, while remain-
ing layers underwent standard quantization annotation. QAT ran
for six epochs with the Adam optimizer and a small learning rate
of 0.0001. A minimal level of augmentation (p = 0.05) was cho-
sen during QAT to stabilize convergence amid the noise introduced
from the QAT process.

3. RESULTS

The proposed MobileGRU architecture demonstrated robust classi-
fication performance across the stages of the compression pipeline,
illustrated in Fig. 3. The teacher model achieved 0.993 average pre-
cision, with knowledge distillation preserving 99.5% of the original
performance (0.988 AP) in the student model. The confusion matrix
(Figure 4) reveals an error rate of 3.7%, defined as:

Error Rate =
FP + FN

TP + TN + FP + FN
(2)

Model File Size Average Precision

”MobileGRU” Teacher 253KB 0.993
”MobileGRU” Student 112KB 0.988
”MobileGRU” TFLite 34KB 0.951

Table 1: Table illustrating model file size reduction alongside per-
formance. Metrics were derived from the validation dataset, and
sizes for the non-TFLite models were derived from the file size of a
weights-only model.
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Figure 4: The confusion matrix on the validation dataset for the
”MobileGRU” teacher model. Classification made using the thresh-
old that produces the highest F1.

The low misclassification rate demonstrates the architecture’s
discriminative capacity for Yellowhammer vocalizations, aided by
dynamic augmentation. As seen in Fig. 1, the final quantized model
achieved 0.951 average precision at a file size of 34KB, a reduction
of 86.6% , indicating effective knowledge transfer and robust fea-
ture representation learning throughout the compression process.

4. CONCLUSION

This investigation demonstrates that systematic model compres-
sion techniques can achieve substantial reductions in computa-
tional requirements while preserving classification performance for
bioacoustic applications. The proposed MobileGRU architecture,
compressed through knowledge distillation and quantization-aware
training, achieved a greater than 7-fold reduction in model size from
253KB to 34KB while retaining 95.8% of the original performance
(0.951 vs 0.993 average precision). The sequential compression
pipeline—employing progressive augmentation strategies from full
intensity during distillation to minimal augmentation during quanti-
zation—proved effective in maintaining feature learning robustness
throughout the optimization process. These results suggest sig-
nificant potential for deploying sophisticated acoustic monitoring
systems on ultra-low-power hardware platforms, enabling extended
autonomous operation in remote conservation environments. The
framework’s success on Yellowhammer detection indicates broader
applicability to diverse bioacoustic classification tasks, where the
balance between model sophistication and deployment constraints
remains a persistent challenge. Future work should investigate the
scalability of this approach across multi-species detection scenarios
and evaluate real-world deployment performance.
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