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1) Tool Introduction 

DeepAcoustics is a deep learning-based tool designed for the detection and classification of 

underwater acoustic signals, with a focus on marine mammal vocalizations. Developed with 

a modular architecture, DeepAcoustics allows users to configure, train, and apply custom 

neural network models for sound event detection. DeepAcoustics supports a range of deep 

learning architectures for acoustic detection and classification, including Tiny YOLO, ResNet, 

and Darknet-based networks, allowing users to select the model best suited for their specific 

data and computational needs. 

This graphical user interface (GUI)-based tool was implemented in MATLAB (version 

R2024b, developed by MathWorks), leveraging the following MATLAB toolboxes: Computer 

Vision, Curve Fitting, Deep Learning, Image Processing, Parallel Computing, Signal 

Processing, and Statistics and Machine Learning. Over the past two years, DeepAcoustics 

has undergone continuous development and recently incorporated multiclass detection 

capabilities, all within a user-friendly framework that supports efficient spectrogram 

preprocessing, model training, testing, and deployment. 

2) Tool Modifications Prior to Task 

Participating in the BioDCASE challenge prompted several modifications to DeepAcoustics. 

Most changes were minor, including improving the utility of the call review dialog and 

adapting to the date/time format used by the files provided. However, one significant 

advancement was changing how validation data was implemented. Previously, 

DeepAcoustics would randomly subset the training data to be used as validation data (using 

a user-specified percentage). However, this approach biases the model and limits the 

generalizability of the final model since the validation data, coming from the same data pool, 

would be autocorrelated with and therefore extremely similar to the training data. Because 

the BioDCASE challenge provided validation data as already separated datasets, this gave 
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us the impetus to improve this functionality in DeepAcoustics and add the option for the 

user to select a pre-determined, separate pool of data to use for validation. 

3) Network Details 
For the baleen whale detection task, DeepAcoustics employed the Tiny YOLO network, a 

lightweight convolutional neural network consisting of 74 layers. Tiny YOLO offers a compact 

alternative to full-scale YOLO architectures, optimized for real-time detection without 

sacrificing significant accuracy. This network was selected due to its efficiency and proven 

performance in constrained computational environments. 

The Tiny YOLO model was pre-trained on the COCO dataset, a comprehensive object 

detection dataset containing over 330,000 labeled images. Unlike datasets such as 

ImageNet that focus on bounding boxes, COCO provides object segmentation, which 

enhances the model's ability to recognize fine-grained structures in data. This pre-training 

served as the foundation for transfer learning, enabling the network to adapt effectively to 

spectrogram image inputs of baleen whale calls. 

Training and validation images were generated from audio files using an image resolution of 

288 × 288 pixels, with a duration of 10 seconds per image. This duration was chosen 

because 90% of calls in the dataset were under 8.8 seconds. Using a larger time window 

was avoided to minimize classification issues introduced by the high variability between blue 

and fin whale call durations. This decision reflects a trade-off between multi-class call 

representation and call separation fidelity. Spectrograms were generated with a window size 

and NFFT of 128, with an 80% overlap between windows.  The resulting normalized power 

spectral densities were enhanced by applying a contrast-limited adaptive histogram 

equalization transform (CLAHE) using a Rayleigh distribution with each tile in the transform 

sized to about 50 Hz by 0.2 seconds, a contrast enhancement limit of 0.005, and a 

distribution parameter of 0.4. 

The model architecture was based on the Tiny YOLO framework, which was adapted from 

previous dolphin whistle classification work (Sugarman et al., In Press). Training parameters 

were selected based on prior benchmarking and computational constraints, summarized 

below: 
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Parameter Value 

Image resolution 288 x 288 pixels 

Maximum image duration 10 seconds 

Window size & NFFT 128 

Overlap 80% 

Anchors 6 (based on previous dolphin whistle work) 

Optimization algorithm RMSprop 

Learning rate 0.0005 

Mini-batch size 16 

Epochs 7 

Training duration 39 hours 

 

Hyperparameter selection for this training effort was guided by results Sugarman et al. (In 

Press), and a project involving neural network development for 40 Hz fin whale calls. These 

earlier efforts informed optimal choices for batch size, learning rate, and model architecture. 

Ideally, without time constraints, significant effort would have gone into tuning the 

hyperparameters to the call types present in this dataset, adding some data augmentation, 

and perhaps dividing the approach to accommodate the significant difference in character 

between, for example, the shorter D-calls and fin calls versus the longer B-calls. 

Sugarman, P. C., Ferguson, E. L., Alongi, G. C., Schallert, J. P., & Lyn, H. (in press). Effects of network 

selection and acoustic environment on bounding-box object detection of delphinid whistles 

using a deep learning tool. Journal of the Acoustical Society of America. 

4) Detection Output 

The trained DeepAcoustics network was evaluated on two separate datasets. On the 

ddu2021 dataset, the network produced 2767 detections, while the kerguelen2020 dataset 

yielded 856 detections across multiple call classes. The model was evaluated on the 

validation data using the Performance Metrics tool in DeepAcoustics to get a more 

quantitative sense of performance, although since these were used to train the network, the 

results are likely biased. Even so, performance was uneven, with blue whale D-calls 

performing best (F-score = 0.5092 for the Casey 2017 dataset, 0.5150 for the Kerguelen 

2014 dataset, and 0.6244 for the Kerguelen 2015 dataset, 2D IOU threshold = 0.3). This 

may suggest that the model would benefit from being divided and tuned to different call 

types, rather than attempting to detect seven call types with one model. In an ideal scenario 

we would incorporate this feedback into iterative training and model testing. 
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Due to the significant effort required to modify the DeepAcoustics tool to accommodate the 

bioCASE dataset structure and formatting, we were unable to perform a more 

comprehensive network training and evaluation with different frameworks. However, we are 

excited to observe how this lightweight network with limited training still demonstrated 

promising detection performance across evaluation datasets. 
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